分布式系统
什么是分布式系统
分布式系统是由一组通过网络进行通信、为了完成共同的任务而协调工作的计算机节点组成的系统。分布式系统的出现是为了用廉价的、普通的机器完成单个计算机无法完成的计算、存储任务。其目的是利用更多的机器,处理更多的数据。 简单的说如下图,我们将三个机器通过网络将其连在一起构成一个用户服务,对于调用方来说这个系统是透明的跟调用单台服务没什么区别,我们就可以把这种系统称作一个分布式系统。
那么分布式系统怎么将任务分发到这些计算机节点呢,很简单的思想,分而治之,即分片(partition)。对于计算,那么就是对计算任务进行切换,每个节点算一些,最终汇总就行了,这就是MapReduce
的思想;对于存储,更好理解一下,每个节点存一部分数据就行了。当数据规模变大的时候,Partition是唯一的选择,同时也会带来一些好处:
- 1).提升性能和并发,操作被分发到不同的分片,相互独立
- 2).提升系统的可用性,即使部分分片不能用,其他分片不会受到影响
分布式系统面临的挑战
1.异构的机器与网络
分布式系统中的机器,配置不一样,其上运行的服务也可能由不同的语言、架构实现,因此处理能力也不一样;节点间通过网络连接,而不同网络运营商提供的网络的带宽、延时、丢包率又不一样。
2.不可靠的网络
节点间通过网络通信,而网络是不可靠的。可能的网络问题包括:网络分割、延时、丢包、乱序
3.网络分区(脑裂)
当网络发生异常导致分布式系统中部分节点之间的网络延时不断增大,最终导致组成分布式架构的所有节点,只有部分节点能够正常通信
分布式协调技术
分布式协调技术主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成”脏数据”的后果 。比如:在分布式系统中多台机器同时访问修改某个共享资源,我们不希望他们同时访问,这时候我们就需要一个协调器来协调有序的进行访问共享资源,就想单节点中多线程中锁的概念,也是在分布式环境中分布式锁的思想。
如何实现这样的一个分布式协调器呢?这样的协调器有什么样的要求呢?
- 1.高可用:每个请求都能够收到一个响应,无论响应成功或者失败
- 2.高性能:高性能就不用说了
- 3.一致性:所有节点上的数据,时刻保持一致
分布式协调技术的实现Zookeeper
ZooKeeper介绍
ZooKeeper是一种为分布式应用所设计的高可用、高性能且一致的开源协调服务,它提供了一项基本服务:分布式锁服务。由于ZooKeeper的开源特性,后来我们的开发者在分布式锁的基础上,摸索了出了其他的使用方法:配置维护、组服务、分布式消息队列、分布式通知/协调等。
注意:ZooKeepe性能上的特点决定了它能够用在大型的、分布式的系统当中。从可靠性方面来说,它并不会因为一个节点的错误而崩溃。除此之外,它严格的序列访问控制意味着复杂的控制原语可以应用在客户端上。ZooKeeper在一致性、可用性、容错性的保证,也是ZooKeeper的成功之处,它获得的一切成功都与它采用的协议——Zab协议是密不可分的,这些内容将会在后面介绍。
Zookeeper的结构
Leader:一个Zookeeper集群同一时间只会有一个实际工作的Leader,它会发起并维护与各Follwer及Observer间的心跳。所有的写操作必须要通过Leader完成再由Leader将写操作广播给其它服务器。
Follower:一个Zookeeper集群可能同时存在多个Follower,它会响应Leader的心跳。Follower可直接处理并返回客户端的读请求,同时会将写请求转发给Leader处理,并且负责在Leader处理写请求时对请求进行投票。
Observer:角色与Follower类似,但是无投票权。 是对follower的拓展
Zookeeper的数据模型
ZooKeeper的数据模型,在结构上和标准文件系统的非常相似,都是采用这种树形层次结构,ZooKeeper树中的每个节点被称为—Znode。和文件系统的目录树一样,ZooKeeper树中的每个节点可以拥有子节点。但也有不同之处:
(1) Znode结构
Znode既像文件一样维护着数据、元信息、ACL、时间戳等数据结构,又像目录一样可以作为路径标识的一部分。图中的每个节点称为一个Znode。 每个Znode由3部分组成:
① stat:此为状态信息, 描述该Znode的版本, 权限等信息
② data:与该Znode关联的数据
③ children:该Znode下的子节点
(2) 数据访问
ZooKeeper中的每个节点存储的数据要被原子性的操作。也就是说读操作将获取与节点相关的所有数据,写操作也将替换掉节点的所有数据。另外,每一个节点都拥有自己的ACL(访问控制列表),这个列表规定了用户的权限,即限定了特定用户对目标节点可以执行的操作。
(3) 节点类型
ZooKeeper中的节点有两种,分别为临时节点和永久节点。节点的类型在创建时即被确定,并且不能改变。
① 临时节点(EPHEMERAL)
该节点的生命周期依赖于创建它们的会话。一旦会话(Session)结束,临时节点将被自动删除,当然可以也可以手动删除。虽然每个临时的Znode都会绑定到一个客户端会话,但他们对所有的客户端还是可见的。另外,ZooKeeper的临时节点不允许拥有子节点。
② 永久节点(PERSISTENT)
该节点的生命周期不依赖于会话,并且只有在客户端显示执行删除操作的时候,他们才能被删除。
③顺序节点(PERSISTENT_SEQUENTIAL)
当创建Znode的时候,用户可以请求在ZooKeeper的路径结尾添加一个递增的计数。这个计数对于此节点的父节点来说是唯一的,它的格式为”%10d”(10位数字,没有数值的数位用0补充,例如”0000000001”)。当计数值大于232-1时,计数器将溢出。
(4) 观察
客户端可以在节点上设置watch,我们称之为监视器。当节点状态发生改变时(Znode的增、删、改)将会触发watch所对应的操作。当watch被触发时,ZooKeeper将会向客户端发送且仅发送一条通知,因为watch只能被触发一次,这样可以减少网络流量
Zookeeper的实现原理
Zookeeper与CAP的关系
在说zookeeper原理之前先介绍下CAP理论,作为一个分布式系统,分区容错性是一个必须要考虑的关键点。一个分布式系统一旦丧失了分区容错性,也就表示放弃了扩展性。因为在分布式系统中,网络故障是经常出现的,一旦出现在这种问题就会导致整个系统不可用是绝对不能容忍的。所以,大部分分布式系统都会在保证分区容错性的前提下在一致性和可用性之间做权衡。
ZooKeeper是个CP(一致性+分区容错性)的,即任何时刻对ZooKeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性;但是它不能保证每次服务请求的可用性。也就是在极端环境下,ZooKeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果。
Zookeeper的实现原理分析
Zookeeper Service网络结构
Zookeeper的工作集群可以简单分成两类,一个是Leader,唯一一个,其余的都是follower,如何确定Leader是通过内部选举确定的。
- Leader和各个follower是互相通信的,对于Zookeeper系统的数据都是保存在内存里面的,同样也会备份一份在磁盘上。
- 如果Leader挂了,Zookeeper集群会重新选举,在毫秒级别就会重新选举出一个Leader。
- 集群中除非有一半以上的Zookeeper节点挂了,Zookeeper Service才不可用。
Zookeeper读写数据
- 写数据,一个客户端进行写数据请求时,如果是follower接收到写请求,就会把请求转发给Leader,Leader通过内部的Zab协议进行原子广播,直到所有Zookeeper节点都成功写了数据后(内存同步以及磁盘更新),这次写请求算是完成,然后Zookeeper Service就会给Client发回响应。
- 读数据,因为集群中所有的Zookeeper节点都呈现一个同样的命名空间视图(就是结构数据),上面的写请求已经保证了写一次数据必须保证集群所有的Zookeeper节点都是同步命名空间的,所以读的时候可以在任意一台Zookeeper节点上。
Zab协议
Zookeeper的核心是广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。
Zab(ZooKeeper Atomic Broadcast)原子消息广播协议作为数据一致性的核心算法,Zab协议是专为Zookeeper设计的支持崩溃恢复原子消息广播算法。
Zab协议核心如下:
所有的事务请求必须一个全局唯一的服务器(Leader)来协调处理,集群其余的服务器称为follower服务器。Leader服务器负责将一个客户端请求转化为事务提议(Proposal),并将该proposal分发给集群所有的follower服务器。之后Leader服务器需要等待所有的follower服务器的反馈,一旦超过了半数的follower服务器进行了正确反馈后,那么Leader服务器就会再次向所有的follower服务器分发commit消息,要求其将前一个proposal进行提交。
Zab模式
Zab协议包括两种基本的模式:崩溃恢复和消息广播。
- 当整个服务框架启动过程中或Leader服务器出现网络中断、崩溃退出与重启等异常情况时,Zab协议就会进入恢复模式并选举产生新的Leader服务器。
- 当选举产生了新的Leader服务器,同时集群中已经有过半的机器与该Leader服务器完成了状态同步之后,Zab协议就会退出恢复模式,状态同步是指数据同步,用来保证集群在过半的机器能够和Leader服务器的数据状态保持一致。
- 当集群中已经有过半的Follower服务器完成了和Leader服务器的状态同步,那么整个服务框架就可以进入消息广播模式。
- 当一台同样遵守Zab协议的服务器启动后加入到集群中,如果此时集群中已经存在一个Leader服务器在负责进行消息广播,那么加入的服务器就会自觉地进入数据恢复模式:找到Leader所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。
Zookeeper只允许唯一的一个Leader服务器来进行事务请求的处理,Leader服务器在接收到客户端的事务请求后,会生成对应的事务提议并发起一轮广播协议,而如果集群中的其他机器收到客户端的事务请求后,那么这些非Leader服务器会首先将这个事务请求转发给Leader服务器。
消息广播
Zab协议的消息广播过程使用是一个原子广播协议,类似一个2PC提交过程。具体的:
- ZooKeeper使用单一主进程Leader用于处理客户端所有事务请求,并采用Zab的原子广播协议,将服务器数据状态变更以事务Proposal的形式广播Follower上,因此能很好的处理客户端的大量并发请求。
- 另一方面,由于事务间可能存在着依赖关系,Zab协议保证Leader广播的变更序列被顺序的处理,有些状态的变更必须依赖于比它早生成的那些状态变更。
- 最后,考虑到主进程Leader在任何时候可能崩溃或者异常退出, 因此Zab协议还要Leader进程崩溃的时候可以重新选出Leader并且保证数据的完整性;Follower收到Proposal后,写到磁盘,返回Ack。Leader收到大多数ACK后,广播Commit消息,自己也提交该消息。Follower收到Commit之后,提交该消息。
Zab协议简化了2PC事务提交:
去除中断逻辑移除,follower要么ack,要么抛弃Leader。
Leader不需要所有的Follower都响应成功,只要一个多数派Ack即可。
Leader 选举
Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。
- 服务器初始化启动。
- 服务器运行期间无法和Leader保持连接。
Zookeeper在3.4.0版本后只保留了TCP版本的 FastLeaderElection 选举算法。当一台机器进入Leader选举时,当前集群可能会处于以下两种状态:
- 集群中已存在Leader。
- 集群中不存在Leader。
对于集群中已经存在Leader而言,此种情况一般都是某台机器启动得较晚,在其启动之前,集群已经在正常工作,对这种情况,该机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器而言,仅仅需要和Leader机器建立起连接,并进行状态同步即可。
而在集群中不存在Leader情况下则会相对复杂,其步骤如下:
(1) 第一次投票。无论哪种导致进行Leader选举,集群的所有机器都处于试图选举出一个Leader的状态,即LOOKING状态,LOOKING机器会向所有其他机器发送消息,该消息称为投票。投票中包含了SID(服务器的唯一标识)和ZXID(事务ID),(SID, ZXID)形式来标识一次投票信息。假定Zookeeper由5台机器组成,SID分别为1、2、3、4、5,ZXID分别为9、9、9、8、8,并且此时SID为2的机器是Leader机器,某一时刻,1、2所在机器出现故障,因此集群开始进行Leader选举。在第一次投票时,每台机器都会将自己作为投票对象,于是SID为3、4、5的机器投票情况分别为(3, 9),(4, 8), (5, 8)。
(2) 变更投票。每台机器发出投票后,也会收到其他机器的投票,每台机器会根据一定规则来处理收到的其他机器的投票,并以此来决定是否需要变更自己的投票,这个规则也是整个Leader选举算法的核心所在,其中术语描述如下
- vote_sid:接收到的投票中所推举Leader服务器的SID。
- vote_zxid:接收到的投票中所推举Leader服务器的ZXID。
- self_sid:当前服务器自己的SID。
- self_zxid:当前服务器自己的ZXID。
每次对收到的投票的处理,都是对(vote_sid, vote_zxid)和(self_sid, self_zxid)对比的过程。
- 规则一:如果vote_zxid大于self_zxid,就认可当前收到的投票,并再次将该投票发送出去。
- 规则二:如果vote_zxid小于self_zxid,那么坚持自己的投票,不做任何变更。
- 规则三:如果vote_zxid等于self_zxid,那么就对比两者的SID,如果vote_sid大于self_sid,那么就认可当前收到的投票,并再次将该投票发送出去。
- 规则四:如果vote_zxid等于self_zxid,并且vote_sid小于self_sid,那么坚持自己的投票,不做任何变更。
- 结合上面规则,给出下面的集群变更过程。
(3) 确定Leader。经过第二轮投票后,集群中的每台机器都会再次接收到其他机器的投票,然后开始统计投票,如果一台机器收到了超过半数的相同投票,那么这个投票对应的SID机器即为Leader。此时Server3将成为Leader。
由上面规则可知,通常那台服务器上的数据越新(ZXID会越大),其成为Leader的可能性越大,也就越能够保证数据的恢复。如果ZXID相同,则SID越大机会越大。
ZooKeeper应用场景(常见)
1,数据发布与订阅(配置中心)
(1) 典型场景描述
发布与订阅即所谓的配置管理,简单的说就是将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。集中式的配置管理在应用集群中是非常常见的,一般商业公司内部都会实现一套集中的配置管理中心,应对不同的应用集群对于共享各自配置的需求,并且在配置变更时能够通知到集群中的每一个机器。
(2) 应用
① 索引信息和集群中机器节点状态存放在ZK的一些指定节点,供各个客户端订阅使用。
② 系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。
③ 应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。
④ 业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。
⑤ 系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了ZK后,只要将这些信息存放到ZK节点上即可。
2,统一命名服务(Name Service)
(1) 场景描述
分布式应用中,通常需要有一套完整的命名规则,既能够产生唯一的名称又便于人识别和记住,通常情况下用树形的名称结构是一个理想的选择,树形的名称结构是一个有层次的目录结构,既对人友好又不会重复。说到这里你可能想到了 JNDI,没错 Zookeeper 的 Name Service 与 JNDI 能够完成的功能是差不多的,它们都是将有层次的目录结构关联到一定资源上,但是Zookeeper的Name Service 更加是广泛意义上的关联,也许你并不需要将名称关联到特定资源上,你可能只需要一个不会重复名称,就像数据库中产生一个唯一的数字主键一样。
(2) 应用
在分布式系统中,通过使用命名服务,客户端应用能够根据指定的名字来获取资源服务的地址,提供者等信息。被命名的实体通常可以是集群中的机器,提供的服务地址,进程对象等等,这些我们都可以统称他们为名字(Name)。其中较为常见的就是一些分布式服务框架中的服务地址列表。通过调用ZK提供的创建节点的API,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。Name Service 已经是Zookeeper 内置的功能,你只要调用 Zookeeper 的 API 就能实现。如调用 create 接口就可以很容易创建一个目录节点。
(3) 应用举例
阿里开源的分布式服务框架Dubbo中使用ZooKeeper来作为其命名服务,维护全局的服务地址列表。在Dubbo实现中: 服务提供者在启动的时候,向ZK上的指定节点/dubbo/{serviceName}/providers
目录下写入自己的URL地址,这个操作就完成了服务的发布。 服务消费者启动的时候,订阅/dubbo/{serviceName}/providers
目录下的提供者URL地址, 并向/dubbo/{serviceName} /consumers
目录下写入自己的URL地址。 注意,所有向ZK上注册的地址都是临时节点,这样就能够保证服务提供者和消费者能够自动感应资源的变化。
3,分布式锁(Distribute Lock)
(1) 场景描述
分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
保持独占: 就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把ZK上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。
控制时序:就是所有试图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。
参考:
http://www.cnblogs.com/bangerlee/p/5991417.html
https://www.cnblogs.com/bangerlee/p/6216997.html
http://www.linkedkeeper.com/1014.html
http://www.jasongj.com/zookeeper/fastleaderelection/
https://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/index.html